• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز البحوث الحيوية الطبية
  • أبحاث مركز البحوث الحيوية الطبية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز البحوث الحيوية الطبية
  • أبحاث مركز البحوث الحيوية الطبية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel deep learning technique for morphology preserved fetal ECG extraction from mother ECG using 1D-CycleGAN

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    2023-HCYalcin-Expert systems-fetal ECG.pdf (4.338Mb)
    التاريخ
    2024-01-31
    المؤلف
    Promit, Basak
    Nazmus Sakib, A.H.M
    Chowdhury, Muhammad E.H.
    Al-Emadi, Nasser
    Cagatay Yalcin, Huseyin
    Pedersen, Shona
    Mahmud, Sakib
    Kiranyaz, Serkan
    Al-Maadeed, Somaya
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The non-invasive fetal electrocardiogram (fECG) enables easy detection of developing heart abnormalities, leading to a significant reduction in infant mortality rate and post-natal complications. Due to the overlapping of maternal and fetal R-peaks, the low amplitude of the fECG, systematic and ambient noises, typical signal extraction methods, such as adaptive filters, independent component analysis, empirical mode decomposition, etc., are unable to produce satisfactory fECG. While some techniques can produce accurate QRS waves, they often ignore other important aspects of the ECG. Utilizing extensive preprocessing and an appropriate framework, our approach, built upon 1D CycleGAN, achieves fECG signal reconstruction from the mECG signal while preserving its morphology. The performance of our solution was evaluated by combining two available datasets from Physionet, “Abdominal and Direct Fetal ECG Database” and “Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations”, where it achieved an average PCC and Spectral-Correlation score of 88.4% and 89.4%, respectively. It detects the fQRS of the signal with accuracy, precision, recall and F1 score of 92.6%, 97.6%, 94.8% and 96.4%, respectively. It can also accurately produce the estimation of fetal heart rate and R-R interval with an error of 0.25% and 0.27%, respectively. The main contribution of our work is that, unlike similar studies, it can retain the morphology of the ECG signal with high fidelity. The accuracy of our solution for fetal heart rate and R-R interval length is comparable to existing state-of-the-art techniques. This makes it a highly effective tool for early diagnosis of fetal heart diseases and regular health checkups of the fetus.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S0957417423016986
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2023.121196
    http://hdl.handle.net/10576/47960
    المجموعات
    • أبحاث مركز البحوث الحيوية الطبية [‎785‎ items ]
    • علوم وهندسة الحاسب [‎2428‎ items ]
    • الهندسة الكهربائية [‎2821‎ items ]
    • أبحاث الطب [‎1739‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video