• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Transportation
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Transportation
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Urban Traffic Monitoring and Modeling System: An IoT Solution for Enhancing Road Safety

    Thumbnail
    View/Open
    Urban Traffic Monitoring and Modeling System An IoT Solution for Enhancing Road Safety.pdf (918.0Kb)
    Date
    2019-12-01
    Author
    Jabbar, Rateb
    Shinoy, Mohammed
    Kharbeche, Mohamed
    Al-Khalifa, Khalifa
    Krichen, Moez
    Barkaoui, Kamel
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Qatar expects more than a million visitors during the 2022 World Cup, which will pose significant challenges. The high number of people will likely cause a rise in road traffic congestion, vehicle crashes, injuries and deaths. To tackle this problem, Naturalistic Driver Behavior can be utilised which will collect and analyze data to estimate the current Qatar traffic system, including traffic data infrastructure, safety planning, and engineering practices and standards. In this paper, an IoT-based solution to facilitate such a study in Qatar is proposed. Different data points from a driver are collected and recorded in an unobtrusive manner, such as trip data, GPS coordinates, compass heading, minimum, average, and maximum speed and his driving behavior, including driver's drowsiness level. Analysis of these data points will help in prediction of crashes and road infrastructure improvements to reduce such events. It will also be used for drivers' risk assessment and to detect extreme road user behaviors. A framework that will help to visualize and manage this data is also proposed, along with a Deep Learning-based application that detects drowsy driving behavior that netted an 82% accuracy.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087514331&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IINTEC48298.2019.9112118
    http://hdl.handle.net/10576/48545
    Collections
    • Transportation [‎90‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video