• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of highly active and coke-resilient Ni-based catalysts for low-temperature steam reformation of methane

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1566736723000079-main.pdf (2.846Mb)
    Date
    2023-01-13
    Author
    Sardar, Ali
    Gamal, Ahmed
    Khader, Mahmoud M.
    Metadata
    Show full item record
    Abstract
    In this work, we report on the development of highly active and stable catalysts for low temperature steam reformation of methane. The Ni-based catalysts supported on alumina were synthesized by the single step solution combustion synthesis (SCS) method. A combination of various surface and bulk sensitive analytical techniques such as XRD, cyclic TPDRO, XPS and HRTEM-SAED was utilized for detailed characterization of the catalysts. The catalyst 5NC synthesized by the SCS method exhibited superior activity and excellent stability for steam reformation of methane during the investigated period on stream for around 200 h. The light-off for methane conversion over the 5NC catalyst started at a reaction temperature of 350 °C whereas for the 5NP catalyst no activity below 600 °C was observed. Moreover, full methane conversion over the 5NC catalyst was achieved at 700 °C. Under similar conditions at reaction temperature of 700 °C, the methane decomposition rates over the 5NC catalyst was around 20 times higher than that of the 5NP catalyst. The exceptional high performance of the 5NC catalyst was attributed to the presence of surface defects, generation of nickel aluminates (NiAl2O4) nano-crystallites, uniform distribution and smaller metal oxide particle size.
    URI
    https://www.sciencedirect.com/science/article/pii/S1566736723000079
    DOI/handle
    http://dx.doi.org/10.1016/j.catcom.2023.106605
    http://hdl.handle.net/10576/55828
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video