• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using learning analytics to measure self-regulated learning: A systematic review of empirical studies in higher education

    Thumbnail
    View/Open
    Computer Assisted Learning - 2024 - Alhazbi - Using learning analytics to measure self‐regulated learning A systematic.pdf (1.559Mb)
    Date
    2024
    Author
    Alhazbi, Saleh
    Al-ali, Afnan
    Tabassum, Aliya
    Al-Ali, Abdulla
    Al-Emadi, Ahmed
    Khattab, Tamer
    Hasan, Mahmood A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: Measuring students' self-regulation skills is essential to understand how they approach their learning tasks in order to identify areas where they might need additional support. Traditionally, self-report questionnaires and think aloud protocols have been used to measure self-regulated learning skills (SRL). However, these methods are based on students' interpretation, so they are prone to potential inaccuracy. Recently, there has been a growing interest in utilizing learning analytics (LA) to capture students' self-regulated learning (SRL) by extracting indicators from their online trace data. Objectives: This paper aims to identify the indicators and metrics employed by previous studies to measure SRL in higher education. Additionally, the study examined how these measurements were validated. Methods: Following the protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this study conducted an analysis of 25 articles, published between 2015 and 2022, and sourced from major databases. Results and Conclusions: The results showed that previous research used a variety of indicators to capture learners' SRL. Most of these indicators are related to time management skills, such as indicators of engagement, regularity, and anti-procrastination. Furthermore, the study found that the majority of the reviewed studies did not validate the proposed measurements based on any theoretical models. This highlights the importance of fostering closer collaboration between learning analytics and learning science to ensure the extracted indicators accurately represent students' learning processes. Moreover, this collaboration can enhance the validity and reliability of data-driven approaches, ultimately leading to more meaningful and impactful educational interventions.
    DOI/handle
    http://dx.doi.org/10.1111/jcal.12982
    http://hdl.handle.net/10576/57700
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]
    • Psychological Sciences [‎124‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video