• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the thermal stability of nanocrystalline aluminum-lithium alloy by combining different mechanisms: Reinforcing with graphene and alloying with Sr

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S092583882201739X-main.pdf (14.64Mb)
    Date
    2022
    Author
    Ahmed, Sara I.
    Hamoudi, Hicham
    Zekri, Atef
    Youssef, Khaled M.
    Metadata
    Show full item record
    Abstract
    Interest in nanocrystalline (nc) aluminum-lithium (Al-Li) alloys is motivated by the demand for lightweight and high-performance materials for light-weighting applications and superior fuel consumption. Nonetheless, nc metals, including Al are thermally unstable, which hinders their technological applications. In this study, we explore the effect of combining dilute amounts of strontium (1.0 at% Sr) and graphene nanoplatelets (1.0 wt% GNPs) to investigate the thermal stability of a nc Al-Li alloy. Ball milling was used to prepare four samples: Al-Li, Al-Li-Sr, Al-Li-GNPs, and Al-Li-Sr-GNPs, to systematically investigate the role of each added element. Isothermal annealing was conducted at different temperatures to investigate the thermal stability. Despite maintaining a nanometric grain size and high hardness of 70 nm and 1.1 GPa, respectively, after annealing at 773 K for 1 h, the Al-Li-Sr-GNPs sample suffered the most significant grain growth and the highest drop in hardness when compared to the Al-Li-Sr and Al-Li-GNPs samples. Microstructural investigations suggested that competing effects resulting from the spontaneous reaction of both Sr and GNPs with Al at higher temperatures resulted in a declining thermal stability efficiency. The formation and distribution of the rod-like Al4C3 phase at the grain boundaries stood in the way of proper Sr diffusion after annealing and caused the agglomeration of the Al4Sr phase.
    DOI/handle
    http://dx.doi.org/10.1016/j.jallcom.2022.165348
    http://hdl.handle.net/10576/61098
    Collections
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video