• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microstructural effect on the corrosion behavior of n- and p-type bismuth tellurides fabricated by induction melting

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1044580323003467-main.pdf (13.82Mb)
    Date
    2023
    Author
    El-Makaty, Farah M.
    Nawaz, Muddasir
    Shakoor, R.A.
    Hammuda, Abdelmagid
    Youssef, Khaled M.
    Metadata
    Show full item record
    Abstract
    Numerous efforts have been made to understand and enhance the thermoelectric properties of bismuth telluride alloys. However, limited studies have been reported to investigate the corrosion behavior of these alloys and their suitability for industrial applications. This paper examines the corrosion behavior of three different bismuth telluride alloys prepared by induction melting: pristine Bi2Te3, n-type Bi2Te2.55Se0.45, and p-type Bi0.6Sb1.4Te3. The electrochemical response of the samples is tested in 3.5 wt% NaCl solution at room temperature. Potentiodynamic polarization curves (Tafel plots) revealed that the n-type sample formed a passive layer compared to the pristine and the p-type samples, which showed pitting corrosion. The different trends observed in the samples were related to their evolved microstructures, where fingerprint-like features in the pristine and the p-type samples showed high susceptibility to pitting corrosion. In contrast, a unique needle-like microstructure of the n-type samples acted as nucleation sites for passive layer formation causing higher corrosion resistance in this sample.
    DOI/handle
    http://dx.doi.org/10.1016/j.matchar.2023.112987
    http://hdl.handle.net/10576/61100
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Materials Science & Technology [‎315‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video