• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Graphene-Reinforced Bulk Metal Matrix Composites: Synthesis, Microstructure, and Properties

    Thumbnail
    View/Open
    10.1515_rams-2020-0007.pdf (17.86Mb)
    Date
    2020
    Author
    Ahmad, Sara I.
    Hamoudi, Hicham
    Abdala, Ahmed
    Ghouri, Zafar K.
    Youssef, Khaled M.
    Metadata
    Show full item record
    Abstract
    This paper provides a critical review on the current status of graphene-reinforced metal matrix composites (GRMMCs) in an effort to guide future work on this topic. Metal matrix composites are preferred over other types of composites for their ability to meet engineering and structural demands. Graphene is considered an ideal reinforcement material for composites due to its unique structure and extraordinary physical, thermal, and electrical properties. Incorporating graphene as a reinforcement in metals is a way of harnessing its extraordinary properties, resulting in an enhanced metallic behavior for a wide variety of applications. Combining graphene with bulk metal matrices is a recent endeavor that has proven to have merit. A systematic study is needed to critically examine the efforts applied in this field, the successes achieved, and the challenges faced. This review highlights the three main pillars of GRMMCs: synthesis, structure, and properties. First, it discusses the synthesis techniques utilized for the fabrication of GRMMCs. Then, it highlights the resulting microstructures of the composites, including graphene dispersion and interfacial interactions. Finally, it summarizes the enhancements in the mechanical, electrical, thermal, and tribological properties of GRMMCs, while highlighting the effects of graphene type and content on those enhancements.
    DOI/handle
    http://dx.doi.org/10.1515/rams-2020-0007
    http://hdl.handle.net/10576/61105
    Collections
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video