عرض بسيط للتسجيلة

المؤلفHu, Yaru
المؤلفOu, Junwei
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفPedrycz, Witold
المؤلفWang, Rui
المؤلفZheng, Jinhua
المؤلفZou, Juan
المؤلفSong, Yanjie
تاريخ الإتاحة2025-01-20T05:12:02Z
تاريخ النشر2024
اسم المنشورIEEE Transactions on Evolutionary Computation
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TEVC.2024.3419892
الرقم المعياري الدولي للكتاب1089778X
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62257
الملخصIn recent years, prediction-based algorithms have attracted much attention for solving dynamic multi-objective optimization problems in the evolutionary computing community. However, this class of algorithms still has potential for further improvements by enhaneing the historical information extraction approach to balance convergence and diversity. In this paper, we propose a dynamic multi-objective optimization algorithm based on a recurrent neural network to balance the population’s convergence and diversity in dynamic environments. The recurrent neural network model in the proposed algorithm employs online learning in order to constantly improve according to the increasing evolutionary information. Meanwhile, differing from most existing prediction-based algorithms, the learning machine is not limited by assumptions, such as linear or nonlinear correlation, when it predicts new solutions for future evolutionary environments. Besides, an auxiliary strategy is performed, which adaptively introduces the random or mutated solutions according to the error losses between the prediction solutions and the optimal solutions in the whole optimization process. The experimental results show that the proposed algorithm is more effective for handling dynamic multi-objective optimization problems than several recent algorithms.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعDynamic multi-objective optimization (DMO)
dynamic response
evolutionary algorithm
neural network
العنوانDynamic Multi-Objective Optimization Algorithm Guided by Recurrent Neural Network
النوعArticle
الصفحات1-1
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة