• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comprehensive review on eutectic phase change materials: Development, thermophysical properties, thermal stability, reliability, and applications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1110016824012092-main.pdf (14.09Mb)
    Date
    2025
    Author
    Anand, Abhishek
    Mansor, Muhamad
    Sharma, Kamal
    Shukla, Amritanshu
    Sharma, Atul
    Siddiqui, Md Irfanul Haque
    Sadasivuni, Kishor Kumar
    Priyadarshi, Neeraj
    Twala, Bhekisipho
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Phase change materials (PCMs) are important constituents for the storage of thermal energy available from the sun. It acts as a bridge between energy demand and supply while reducing the mismatch. Organic and inorganic constituents have been used for a long time for thermal energy storage applications. In recent years, the focus has been shifted to eutectics. A eutectic is a minimum melting substance of two or more constituents. It has the advantage of having a sharp melting temperature and possessing high volumetric heat storage density. The eutectics possess a wide range of temperatures and have the properties of all of their constituents. At present organic-organic, organic-inorganic, and organic-inorganic eutectics are widely studied. In the present paper, various eutectic PCMs for low and medium temperature ranges have been analyzed. Their thermophysical properties and thermal stability and reliability concerning thermal cycling have been thoroughly discussed. The melting temperature lies in the range of −23.50 °C to 80 °C and the latent heat of fusion can be as high as 280 kJ/kg. Thermal cycle tests of up to 30000 have been conducted by various research groups, but at least 300 melt/freeze cycles are recommended so that they can be stable for a year of application. The organic eutectic PCMs are found stable in terms of deviation in melting temperature with the maximum deviation in latent heat of fusion observed was ± 20 %. The inorganic eutectic PCMs are somewhat unstable having a large deviation in melting temperature and latent heat of fusion. The low thermal conductivity of organic eutectics can be eliminated with suitable nanoparticle additives. The leakage issue can be eliminated by providing shape stabilization to the PCMs. These PCMs are suitable for various photovoltaic/thermal, buildings, textiles, solar water heating, solar air heaters, and heat recovery systems applications.
    DOI/handle
    http://dx.doi.org/10.1016/j.aej.2024.10.054
    http://hdl.handle.net/10576/63034
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video