• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An experimental-coupled empirical investigation on the corrosion inhibitory action of 7-alkyl-8-Hydroxyquinolines on C35E steel in HCl electrolyte

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0167732220324508-main.pdf (3.773Mb)
    Date
    2020
    Author
    El Faydy, M.
    Benhiba, F.
    Berisha, A.
    Kerroum, Y.
    Jama, C.
    Lakhrissi, B.
    Guenbour, A.
    Warad, I.
    Zarrouk, A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Two 8-Hydroxyquinoline-based piperazine, 7-((4-(4-chloro phenyl)piperazin-1-yl) methyl) quinolin-8-ol (CPQ) and 7-((4-methyl piperazin-1-yl) methyl)quinolin-8-ol (MPQ) were prepared, identified and investigated as corrosion inhibiting additives of C35E steel in HCl electrolyte using experimental and theoretical tools. All outcomes findings confirm that CPQ and MPQ significantly improved anti-corrosion properties of C35E steel and CPQ performed better than MPQ and their inhibition efficiency depends on the temperature, the amount, and the chemical structure of the inhibitor. The ηmax of CPQ and MPQ reaches as much as 91.5% and 86.3% at 10−3 M, respectively. EIS outcomes revealed that the corrosion of C35E steel is controlled by only one charge transfer mechanism and the adsorbed CPQ and MPQ molecules decreased the steel dissolution by developing a pseudo-capacitive film on the steel surface. Both additives revealed mixed-type inhibitory activity, lowering of cathodic and anodic corrosion reactions rate, as proposed from the polarization investigation. The UV–Visible spectra suggest the existence of strong interaction between iron cations and 7-(4-alkylpiperazinylmethyl)-8-Hydroxyquinolines molecules. The 7-(4-alkylpiperazinylmethyl)-8-Hydroxyquinolines were chemisorbed on the C35E steel surface in accordance with Langmuir adsorption isotherm. Temperature influence studies of CPQ and MPQ adsorption behavior, as well as estimated thermodynamic magnitudes, are consistent with a physisorption process. The computational correlations (DFT, Monte Carlo, and Molecular Dynamic simulations) justify the experimental observations.
    DOI/handle
    http://dx.doi.org/10.1016/j.molliq.2020.113973
    http://hdl.handle.net/10576/63628
    Collections
    • Chemistry & Earth Sciences [‎601‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video