• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bending behavior of glass fiber reinforced composite overwrapping pvc plastic pipes

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0263822320325824-main.pdf (9.949Mb)
    Date
    2020
    Author
    J.Al-Mahfooz, M.
    Mahdi, E.
    Metadata
    Show full item record
    Abstract
    The challenge associated with the use of polyvinyl chloride (PVC) plastic pipelines is to improve their structural integrity without increasing their cost. Currently, PVC pipelines are the most cost-effective method of transporting water and sewage drainage. However, their low deterioration and mechanical properties cause significant losses and sacrifice the structural integrity of pipelines. Therefore, this study proposes the glass fiber-reinforced polymer (GFRP) overwrapped system to strengthen the external surface of PVC pipes, which will improve pipes' flexural load-carrying capacities. Accordingly, an extensive experimental program is developed and performed to examine the flexural behavior of GFRP composite overwrapped onto PVC plastic pipes. These phases include the fabrication process and different types of tests for evaluating the structural integrity of the GFRP/PVC pipes. The results showed that the proposed overwrapped system significantly improved the flexural carrying capability. The initial flexural failure load increased significantly, with an improvement from 64 to 1140 N. Also, the ultimate flexural load found to be improved by a factor of nine. The flexural behavior was significantly affected by changes in the fiber orientation angle. The results also revealed that as the pipe diameter increased, the flexural carrying load capacity increased. It is also important to note that the matrix cracking, fiber debonding, and fiber breakage were dominating the failure modes of GFRP/PVC pipes.
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2020.112656
    http://hdl.handle.net/10576/63633
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video