• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Trans-resveratrol-loaded nanostructured lipid carrier formulations for pulmonary drug delivery using medical nebulizers

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0022354925001716-main.pdf (1.037Mb)
    Date
    2025-02-27
    Author
    Iftikhar, Khan
    Sabu, Maria
    Hussein, Nozad
    Omer, Huner
    Houacine, Chahinez
    Khan, Wasiq
    Elhissi, Abdelbary
    Yousaf, Sakib
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Aerosolization is a non-invasive approach of delivering drugs for both localized and systemic effects, specifically pulmonary targeting. The aim of this study was to deliver trans-resveratrol (TR) as an anti-cancer drug entrapped in a new generation versatile carriers nanostructured lipid carrier (NLC) to protect degradation and improve bioavailability via medical nebulizers. Twelve TR-NLC (i.e., F1-F12) formulations were prepared using different combinations and ratios of formulation ingredients via hot high-pressure homogenization. Upon analysis, formulations F1 and F2 demonstrated a particle size of <185 nm, a polydispersity index (PDI) <0.25, Zeta potential values of ∼30 mV and an entrapment efficiency >94%. The aerosolization performance of the F1 and F2 formulations was performed via a next generation impactor (NGI), using medical nebulizers. The air jet nebulizer demonstrated lower drug deposition in the earlier stages (1-2) and significantly higher deposition in the latter stages 3-5 (for both formulations), targeting middle to lower lung deposition. Moreover, the air jet nebulizer exhibited significantly higher emitted dose (ED) (87.44 ± 3.36%), fine particle dose (FPD) (1652.52 ± 9.68 µg) fine particle fraction (FPF) (36.25 ± 4.26%), and respirable fraction (RF) (93.41 ± 4.03%) when the F1 formulation was used as compared to the F2 formulation. Thus, the TR-NLC F1 formulation and air jet nebulizer were identified as the best combination for the delivery and targeting peripheral lungs.
    URI
    https://www.sciencedirect.com/science/article/pii/S0022354925001716
    DOI/handle
    http://dx.doi.org/10.1016/j.xphs.2025.103713
    http://hdl.handle.net/10576/64059
    Collections
    • Pharmacy Research [‎1389‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video