• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improvement in inhibition performance of anti-corrosion coatings using polyolefin matrix embedded with modified TiO2 nanoparticles

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S030094402400451X-main.pdf (9.400Mb)
    Date
    2024-10-31
    Author
    Nawaz, Muddasir
    Ahmad, Shoaib
    Taryba, Maryna G.
    Montemor, M.F.
    Kahraman, Ramazan
    Shakoor, R.A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Corrosion remains a critical issue for steel structures, leading to costly repairs and potential failures in industrial sectors. This study presents the development and characterization of polyolefin coatings for enhanced corrosion protection. Initially, the porous TiO2 nanoparticles were synthesized using the sol-gel method, followed by their modification through the encapsulation of sodium benzoate (SB) as a corrosion inhibitor. Modified Polyolefin coatings were prepared by incorporating modified nanoparticles (TiO2 loaded with sodium benzoate) into the polyolefin matrix, and an unmodified/blank polyolefin coating was prepared without any additive in the polyolefin matrix. The loading of the inhibitor into porous TiO2 was 10 % analyzed using thermogravimetric analysis. Furthermore, the electrochemical analysis revealed significant improvements in the corrosion resistance and barrier properties of the modified coatings compared to the unmodified blank coatings. Specifically, after 7 days in a corrosive environment, the blank coating pore resistance dropped from 1 × 1010 Ω·cm2 to 5 × 108 Ω·cm2, while the modified coating maintained a high pore resistance of 5 × 1011 Ω·cm2. A localized corrosion study for scratched blank polyolefin coatings showed growing corrosion activity from 5 h of immersion, while modified coatings ceased the detectable activity before 4 h of immersion, which evidenced the improved corrosion inhibition efficiency of the modified coating. This stability in corrosive environments was attributed to the successful loading of modified nanoparticles (TiO2/SB), where SB served as an active agent by forming a protective film on the steel substrate. Which inhibits the corrosion processes along with Ti-based compounds and prevents corrosion propagation under the damaged coating. The enhanced hydrophobic nature of 99° and electrochemical properties support the suitability of these coatings for corrosion protection of steel in various industries.
    URI
    https://www.sciencedirect.com/science/article/pii/S030094402400451X
    DOI/handle
    http://dx.doi.org/10.1016/j.porgcoat.2024.108659
    http://hdl.handle.net/10576/64286
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Chemical Engineering [‎1194‎ items ]
    • Materials Science & Technology [‎315‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video