عرض بسيط للتسجيلة

المؤلفSumon, Md Shaheenur Islam
المؤلفHossain, Md Sakib Abrar
المؤلفAl-Sulaiti, Haya
المؤلفYassine, Hadi M.
المؤلفChowdhury, Muhammad E.H.
تاريخ الإتاحة2025-04-22T08:56:00Z
تاريخ النشر2025-01-11
اسم المنشورMetabolites
المعرّفhttp://dx.doi.org/10.3390/metabo15010044
الاقتباسSumon, M. S. I., Hossain, M. S. A., Al-Sulaiti, H., Yassine, H. M., & Chowdhury, M. E. (2025). A Comprehensive Machine Learning Approach for COVID-19 Target Discovery in the Small-Molecule Metabolome. Metabolites, 15(1), 44.
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85215779737&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64403
الملخصBackground/Objectives: Respiratory viruses, including Influenza, RSV, and COVID-19, cause various respiratory infections. Distinguishing these viruses relies on diagnostic methods such as PCR testing. Challenges stem from overlapping symptoms and the emergence of new strains. Advanced diagnostics are crucial for accurate detection and effective management. This study leveraged nasopharyngeal metabolome data to predict respiratory virus scenarios including control vs. RSV, control vs. Influenza A, control vs. COVID-19, control vs. all respiratory viruses, and COVID-19 vs. Influenza A/RSV. Method: We proposed a stacking-based ensemble technique, integrating the top three best-performing ML models from the initial results to enhance prediction accuracy by leveraging the strengths of multiple base learners. Key techniques such as feature ranking, standard scaling, and SMOTE were used to address class imbalances, thus enhancing model robustness. SHAP analysis identified crucial metabolites influencing positive predictions, thereby providing valuable insights into diagnostic markers. Results: Our approach not only outperformed existing methods but also revealed top dominant features for predicting COVID-19, including Lysophosphatidylcholine acyl C18:2, Kynurenine, Phenylalanine, Valine, Tyrosine, and Aspartic Acid (Asp). Conclusions: This study demonstrates the effectiveness of leveraging nasopharyngeal metabolome data and stacking-based ensemble techniques for predicting respiratory virus scenarios. The proposed approach enhances prediction accuracy, provides insights into key diagnostic markers, and offers a robust framework for managing respiratory infections.
راعي المشروعThis study was supported by the collaborative grants from Qatar University: QUCG-BRC- 24/25-463. Open access publication is covered by the Qatar National Library.
اللغةen
الناشرMultidisciplinary Digital Publishing Institute (MDPI)
الموضوعCOVID-19
diagnostic markers
machine learning
metabolomics
respiratory viruses
العنوانA Comprehensive Machine Learning Approach for COVID-19 Target Discovery in the Small-Molecule Metabolome
النوعArticle
رقم العدد1
رقم المجلد15
ESSN2218-1989
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة