عرض بسيط للتسجيلة

المؤلفGao, Ruobin
المؤلفHu, Minghui
المؤلفLi, Ruilin
المؤلفLuo, Xuewen
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفTanveer, M.
تاريخ الإتاحة2025-05-06T11:22:07Z
تاريخ النشر2025
اسم المنشورIEEE Transactions on Neural Networks and Learning Systems
المعرّفhttp://dx.doi.org/10.1109/TNNLS.2025.3529219
الاقتباسGao, R., Hu, M., Li, R., Luo, X., Suganthan, P. N., & Tanveer, M. (2025). Stacked Ensemble Deep Random Vector Functional Link Network With Residual Learning for Medium-Scale Time-Series Forecasting. IEEE Transactions on Neural Networks and Learning Systems.
الرقم المعياري الدولي للكتاب2162-237X
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217972017&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64798
الملخصThe deep random vector functional link (dRVFL) and ensemble dRVFL (edRVFL) succeed in various tasks and achieve state-of-the-art performance compared with other randomized neural networks (NNs). However, existing edRVFL structures need more diversity and error correction ability in an independent network. Our work fills the gap by combining stacked deep blocks and residual learning with the edRVFL. Subsequently, we propose a novel dRVFL combined with residual learning, ResdRVFL, whose deep layers calibrate the wrong estimations from shallow layers. Additionally, we propose incorporating a scaling parameter to control the scaling of residuals from shallow layers, thus mitigating the risk of overfitting. Finally, we present an ensemble deep stacking network, SResdRVFL, based on ResdRVFL. SResdRVFL aggregates multiple blocks into a cohesive network, leveraging the benefits of deep learning and ensemble learning. We evaluate the proposed model on 28 datasets and compare it with the state-of-the-art methods. The comparative study demonstrates that the SResdRVFL is the best-performing approach in terms of average ranking and errors based on 28 datasets.
راعي المشروعOpen Access funding provided by the Qatar National Library.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc. (IEEE)
الموضوعEnsemble deep learning
forecasting
machine learning
multiple output layers
random vector functional link (RVFL) neural networks (NNs)
randomized NNs
transformers
العنوانStacked Ensemble Deep Random Vector Functional Link Network with Residual Learning for Medium-Scale Time-Series Forecasting
النوعArticle
ESSN2162-2388
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة