• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ON RELEVANCE FILTERING FOR REAL-TIME TWEET SUMMARIZATION

    Thumbnail
    View/Open
    Reem Suwaileh_OGSApproved Thesis.pdf (2.474Mb)
    Date
    2018-06
    Author
    SUWAILEH, REEM ALI
    Metadata
    Show full item record
    Abstract
    Real-time tweet summarization systems (RTS) require mechanisms for capturing relevant tweets, identifying novel tweets, and capturing timely tweets. In this thesis, we tackle the RTS problem with a main focus on the relevance filtering. We experimented with different traditional retrieval models. Additionally, we propose two extensions to alleviate the sparsity and topic drift challenges that affect the relevance filtering. For the sparsity, we propose leveraging word embeddings in Vector Space model (VSM) term weighting to empower the system to use semantic similarity alongside the lexical matching. To mitigate the effect of topic drift, we exploit explicit relevance feedback to enhance profile representation to cope with its development in the stream over time. We conducted extensive experiments over three standard English TREC test collections that were built specifically for RTS. Although the extensions do not generally exhibit better performance, they are comparable to the baselines used. Moreover, we extended an event detection Arabic tweets test collection, called EveTAR, to support tasks that require novelty in the system's output. We collected novelty judgments using in-house annotators and used the collection to test our RTS system. We report preliminary results on EveTAR using different models of the RTS system.
    DOI/handle
    http://hdl.handle.net/10576/11177
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video