• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational approach to unravel the impact of missense mutations of proteins (D2HGDH and IDH2) causing D-2-hydroxyglutaric aciduria 2.

    Thumbnail
    Date
    2018-07-01
    Author
    Thirumal Kumar, D
    Jerushah Emerald, L
    George Priya Doss, C
    Sneha, P
    Siva, R
    Charles Emmanuel Jebaraj, W
    Zayed, Hatem
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The 2-hydroxyglutaric aciduria (2-HGA) is a rare neurometabolic disorder that leads to the development of brain damage. It is classified into three categories: D-2-HGA, L-2-HGA, and combined D,L-2-HGA. The D-2-HGA includes two subtypes: type I and type II caused by the mutations in D2HGDH and IDH2 proteins, respectively. In this study, we studied six mutations, four in the D2HGDH (I147S, D375Y, N439D, and V444A) and two in the IDH2 proteins (R140G, R140Q). We performed in silico analysis to investigate the pathogenicity and stability changes of the mutant proteins using pathogenicity (PANTHER, PhD-SNP, SIFT, SNAP, and META-SNP) and stability (i-Mutant, MUpro, and iStable) predictors. All the mutations of both D2HGDH and IDH2 proteins were predicted as disease causing except V444A, which was predicted as neutral by SIFT. All the mutants were also predicted to be destabilizing the protein except the mutants D375Y and N439D. DSSP plugin of the PyMOL and Molecular Dynamics Simulations (MDS) were used to study the structural changes in the mutant proteins. In the case of D2HGDH protein, the mutations I147S and V444A that are positioned in the beta sheet region exhibited higher Root Mean Square Deviation (RMSD), decrease in compactness and number of intramolecular hydrogen bonds compared to the mutations N439D and D375Y that are positioned in the turn and loop region, respectively. While the mutants R140Q and R140QG that are positioned in the alpha helix region of the protein. MDS results revealed the mutation R140Q to be more destabilizing (higher RMSD values, decrease in compactness and number of intramolecular hydrogen bonds) compared to the mutation R140G of the IDH2 protein. This study is expected to serve as a platform for drug development against 2-HGA and pave the way for more accurate variant assessment and classification for patients with genetic diseases.
    DOI/handle
    http://dx.doi.org/10.1007/s11011-018-0278-3
    http://hdl.handle.net/10576/11279
    Collections
    • Biomedical Sciences [‎833‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video