• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Elucidating the role of interacting residues of the MSH2-MSH6 complex in DNA repair mechanism: A computational approach.

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019-02-26
    Author
    Thirumal Kumar, D
    Susmita, B
    Judith, E
    Priyadharshini Christy, J
    George Priya Doss, C
    Zayed, Hatem
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The DNA repair system is crucial to repair the error resulting in DNA replication. MSH2-MSH6 protein complex plays a significant role in maintaining the mismatch repair mechanism. Mutations in the interface between the two proteins compromise their function in the repair process. The present study aims to understand the impact of missense mutations in the interacting sites of the MSH2-MSH6 protein complex. MSH6 is unstable due to the disordered N-terminal domain. This is stabilized by the MSH2 hetero-dimerization. We used pathogenicity and stability predictors to identify the missense mutations that could be more pathogenic with the destabilizing property. The mutations W764C of MSH2, and L1201F and G1316E of MSH6 were predicted to be highly deleterious and destabilizing by all the in silico predictors. The dynamic motion of the native and mutant (W764C) MSH2-MSH6 protein complexes was further investigated using Molecular Dynamics Simulations of the GROMACS package. The Root Mean Square Deviation (RMSD), Radius of Gyration (Rg), and change in a number of intramolecular hydrogen bonds (H-bonds) were analyzed using the embedded packages of GROMACS. From the simulation studies, we observed higher deviation, lower protein compactness, and a decrease in the number of intramolecular hydrogen bonds in the mutant W764C MSH2-MSH6 protein complex. The observed results from the computational methods suggest the involvement of higher structural impact on the MSH2-MSH6 protein complex upon W764C mutation could affect the DNA repair mechanism.
    DOI/handle
    http://dx.doi.org/10.1016/bs.apcsb.2018.11.005
    http://hdl.handle.net/10576/11371
    Collections
    • Biomedical Sciences [‎796‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video