• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of estrogen on Survival and Neuronal Differentiation of adult human olfactory bulb neural stem Cells Transplanted into Spinal Cord Injured Rats

    Thumbnail
    Date
    2019-03-08
    Author
    Hany E, Marei
    Asmaa, Althani
    Ahmed, Abd-Elmaksoud
    Mohamed, Kassab
    Amany, Farag
    Samah, Lashen
    Carlo, Cenciarelli
    Thomas, Caceci
    Shymaa, Rezk
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In the present study we developed an excitotoxic spinal cord injury (SCI) model using kainic acid (KA) to evaluate of the therapeutic potential of human olfactory bulb neural stem cells (h-OBNSCs) for spinal cord injury (SCI). In a previous study, we assessed the therapeutic potential of these cells for SCI; all transplanted animals showed successful engraftment. These cells differentiated predominantly as astrocytes, not motor neurons, so no improvement in motor functions was detected. In the current study we used estrogen as neuroprotective therapy before transplantation of OBNSCs to preserve some of endogenous neurons and enhance the differentiation of these cells towards neurons. The present work demonstrated that the h-GFP-OBNSCs were able to survive for more than eight weeks after sub-acute transplantation into injured spinal cord. Stereological quantification of OBNSCs showed approximately a 2.38-fold increase in the initial cell population transplanted. 40.91% of OBNSCs showed differentiation along the neuronal lineages, which was the predominant fate of these cells. 36.36% of the cells differentiated into mature astrocytes; meanwhile 22.73% of the cells differentiated into oligodendrocytes. Improvement in motor functions was also detected after cell transplantation.
    DOI/handle
    http://dx.doi.org/10.1101/571950
    http://hdl.handle.net/10576/11403
    Collections
    • Biomedical Research Center Research [‎785‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video