• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    From Acellular Matrices to Smart Polymers: Degradable Scaffolds that are Transforming the Shape of Urethral Tissue Engineering.

    View/Open
    Journal Paper in International Journal of Molecular Sciences (4.607Mb)
    Date
    2019-04-01
    Author
    Abbas, Tariq O
    Yalcin, Huseyin C
    Pennisi, Cristian P
    Metadata
    Show full item record
    Abstract
    Several congenital and acquired conditions may result in severe narrowing of the urethra in men, which represent an ongoing surgical challenge and a significant burden on both health and quality of life. In the field of urethral reconstruction, tissue engineering has emerged as a promising alternative to overcome some of the limitations associated with autologous tissue grafts. In this direction, preclinical as well as clinical studies, have shown that degradable scaffolds are able to restore the normal urethral architecture, supporting neo-vascularization and stratification of the tissue. While a wide variety of degradable biomaterials are under scrutiny, such as decellularized matrices, natural, and synthetic polymers, the search for scaffold materials that could fulfill the clinical performance requirements continues. In this article, we discuss the design requirements of the scaffold that appear to be crucial to better resemble the structural, physical, and biological properties of the native urethra and are expected to support an adequate recovery of the urethral function. In this context, we review the biological performance of the degradable polymers currently applied for urethral reconstruction and outline the perspectives on novel functional polymers, which could find application in the design of customized urethral constructs.
    DOI/handle
    http://dx.doi.org/10.3390/ijms20071763
    http://hdl.handle.net/10576/11517
    Collections
    • Biomedical Research Center Research [‎800‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video