• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Public Health
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Public Health
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifying mortality risk factors amongst acute coronary syndrome patients admitted to Arabian Gulf hospitals using machine‐learning methods

    Thumbnail
    Date
    2019
    Author
    Raza, Syed Asif
    Thalib, Lukman
    Al Suwaidi, Jassim
    Sulaiman, Kadhim
    Almahmeed, Wael
    Amin, Haitham
    AlHabib, Khalid F.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Acute coronary syndrome (ACS) is a leading cause of mortality and morbidity in the Arabian Gulf. In this study, the in‐hospital mortality amongst patients admitted with ACS to Arabian Gulf hospitals is predicted using a comprehensive modelling framework that combines powerful machine‐learning methods such as support‐vector machine (SVM), Naïve Bayes (NB), artificial neural networks (NN), and decision trees (DT). The performance of the machine‐learning methods is compared with that of the performance of a commonly used statistical method, namely, logistic regression (LR). The study follows the current practise of computing mortality risk using risk scores such as the Global Registry of Acute Coronary Events (GRACE) score, which has not been validated for Arabian Gulf patients. Cardiac registry data of 7,000 patients from 65 hospitals located in Arabian Gulf countries are used for the study. This study is unique as it uses a contemporary data analytics framework. A k‐fold (k = 10) crossvalidation is utilized to generate training and validation samples from the GRACE dataset. The machine‐learning‐based predictive models often incur prejudgments for imbalanced training data patterns. To mitigate the data imbalance due to scarce observations for in‐hospital mortalities, we have utilized specialized methods such as random undersampling (RUS) and synthetic minority over sampling technique (SMOTE). A detailed simulation experimentation is carried out to build models with each of the five predictive methods (LR, NN, NB, SVM, and DT) for the each of the three datasets k‐fold subsamples generated. The predictive models are developed under three schemes of the k‐fold samples that include no data imbalance, RUS, and SMOTE. We have implemented an information fusion method rooted in computing weighted impact scores obtain for an individual medical history attributes from each of the predictive models simulated for a collective recommendation based on an impact score specific to a predictor. Finally, we grouped the predictors using fuzzy c‐mean clustering method into three categories, high‐, medium‐, and low‐risk factors for in‐hospital mortality due to ACS. Our study revealed that patients with medical history related to the presences of peripheral artery disease, congestive heart failure, cardiovascular transient ischemic attack valvular disease, and coronary artery bypass grafting amongst others have the most risk for in‐hospital
    DOI/handle
    http://dx.doi.org/10.1111/exsy.12413
    http://hdl.handle.net/10576/11539
    Collections
    • Public Health [‎480‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video