• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Magnetic-Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclast-Targeted Inhibition and Heterogeneous Nanocatalysis

    Thumbnail
    Date
    2018-06-20
    Author
    Wan, L.
    Wan, Li
    Song, Hongyuan
    Chen, Xiao
    Zhang, Yu
    Yue, Qin
    Pan, Panpan
    Su, Jiacan
    Elzatahry, Ahmed A.
    Deng, Yonghui
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1D core–shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe 3 O 4 @nSiO 2 @mSiO 2 nanochain, Magn-MSNCs named as FDUcs-17C) are facilely synthesized via a novel magnetic-field-guided interface coassembly approach in two steps. Fe 3 O 4 particles are coated with nonporous silica in a magnetic field to form 1D Fe 3 O 4 @nSiO 2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n-hexane biliquid system leads to 1D Magn-MSNCs with core–shell–shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m 2 g −1 ), and high magnetization (34.9 emu g −1 ). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe 3 O 4 @nSiO 2 @mSiO 2 -Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4-nitrophenol with high catalytic performance and good magnetic recyclability.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046451649&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/adma.201707515
    http://hdl.handle.net/10576/11860
    Collections
    • Materials Science & Technology [‎337‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video