• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of dissolved carbon dioxide concentration on the process parameters during its conversion to acetate through microbial electrosynthesis

    Thumbnail
    Date
    2018-06-01
    Author
    Mohanakrishna, G.
    Mohanakrishna, Gunda
    Vanbroekhoven, Karolien
    Pant, Deepak
    Metadata
    Show full item record
    Abstract
    © 2018 The Royal Society of Chemistry. The reduction of carbon dioxide (CO2) released from industry can help to reduce the emissions of greenhouse gases (GHGs) to the atmosphere while at the same time producing value-added chemicals and contributing to carbon fixation. Microbial electrosynthesis (MES) is a recently developed process which accomplishes this idea by using cathodic bacteria at the expense of only minimum energy. In this study, enriched mixed homoacetogenic bacteria as cathodic biocatalysts for the reduction of CO2 with five different concentrations were evaluated to produce acetate at a constant potential. Increasing the carbon concentration showed an improved acetate production rate and carbon conversion efficiency. A maximum acetate production rate of 142.2 mg L per day and a maximum carbon conversion efficiency of 84% were achieved, respectively, at 4.0 and 2.5 g HCO3- L-1. The changes in pH due to interactive reactions between the bicarbonate (substrate) and acetate (products) were able to create a buffering nature in the catholyte controlling the operating parameters of the MES process, such as pH and substrate specificity. A higher acetate production shifted the catholyte pH toward acidic conditions, which further triggered favorable conditions for the bioelectrochemical reduction of acetate to ethanol.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048082796&origin=inward
    DOI/handle
    http://dx.doi.org/10.1039/c7re00220c
    http://hdl.handle.net/10576/11890
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video