• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic workload patterns prediction for proactive auto-scaling of web applications

    Thumbnail
    Date
    2018
    Author
    Iqbal W.
    Erradi A.
    Mahmood A.
    Metadata
    Show full item record
    Abstract
    Proactive auto-scaling methods dynamically manage the resources for an application according to the current and future load predictions to preserve the desired performance at a reduced cost. However, auto-scaling web applications remain challenging mainly due to dynamic workload intensity and characteristics which are difficult to predict. Most existing methods mainly predict the request arrival rate which only partially captures the workload characteristics and the changing system dynamics that influence the resource needs. This may lead to inappropriate resource provisioning decisions. In this paper, we address these challenges by proposing a framework for prediction of dynamic workload patterns as follows. First, we use an unsupervised learning method to analyze the web application access logs to discover URI (Uniform Resource Identifier) space partitions based on the response time and the document size features. Then for each application URI, we compute its distribution across these partitions based on historical access logs to accurately capture the workload characteristics compared to just representing the workload using the request arrival rate. These URI distributions are then used to compute the Probabilistic Workload Pattern (PWP), which is a probability vector describing the overall distribution of incoming requests across URI partitions. Finally, the identified workload patterns for a specific number of last time intervals are used to predict the workload pattern of the next interval. The latter is used for future resource demand prediction and proactive auto-scaling to dynamically control the provisioning of resources. The framework is implemented and experimentally evaluated using historical access logs of three real web applications, each with increasing, decreasing, periodic, and randomly varying arrival rate behaviors. Results show that the proposed solution yields significantly more accurate predictions of workload patterns and resource demands of web applications compared to existing approaches. ? 2018 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.jnca.2018.09.023
    http://hdl.handle.net/10576/11925
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video