• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis, characterization & cytocompatibility of poly (diol-co-tricarballylate) based thermally crosslinked elastomers for drug delivery & tissue engineering applications

    Thumbnail
    Date
    2018
    Author
    HassounaY.M.
    ZamaniS.
    KafienahW.
    YounesH.M.
    Metadata
    Show full item record
    Abstract
    The aim of this study was to investigate the synthesis and in vitro characterization of thermoset biodegradable poly (diol-co-tricarballylate) (PDT) elastomeric polymers for the purpose of their use in implantable drug delivery and tissue engineering applications. The synthesis was based on thermal crosslinking technique via a polycondensation reaction of tricarballylic acid with aliphatic diols of varying chain lengths (C6-C12). PDT prepolymers were synthesized at 140 �C for 20 min. After purification, the prepolymers were molded and kept at 120 �C for 18 h under vacuum to complete the crosslinking process. PDT prepolymers were characterized by DSC, FT-IR, 1H NMR and GPC. The PDT elastomers were also subjected to thermal and structural analysis, as well as sol content, mechanical testing, in vitro degradation and cytocompatibility studies. The mechanical properties and sol content were found to be dependent on synthesis conditions and can be controlled by manipulating the crosslinking density and number of methylene groups in the chain of precursor aliphatic diol. The family of thermally crosslinked PDT biodegradable polyesters were successfully prepared and characterized; besides they have promising use in drug delivery and other biomedical tissue engineering applications.
    DOI/handle
    http://dx.doi.org/10.1016/j.msec.2018.07.028
    http://hdl.handle.net/10576/12028
    Collections
    • Pharmacy Research [‎1419‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video