• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mobile Target Coverage and Tracking on Drone-Be-Gone UAV Cyber-Physical Testbed

    Thumbnail
    Date
    2018
    Author
    KhanM.
    HeurtefeuxK.
    MohamedA.
    HarrasK.A.
    HassanM.M.
    Metadata
    Show full item record
    Abstract
    Mobile wireless sensor networks have been extensively deployed for enhancing environmental monitoring and surveillance. The availability of low-cost mobile robots equipped with a variety of sensors makes them promising in target coverage tasks. They are particularly suitable where quick, inexpensive, or nonlasting visual sensing solutions are required. In this paper, we consider the problem of low complexity target tracking to cover and follow moving targets using flying robots. We tackle this problem by clustering targets while estimating the camera location and orientation for each cluster separately through a cover-set coverage method. We also leverage partial knowledge of target mobility to enhance the efficiency of our proposed algorithms. Three computationally efficient approaches are developed: predictive fuzzy, predictive incremental fuzzy, and local incremental fuzzy. The objective is to find a compromise among coverage efficiency, traveled distance, number of drones required, and complexity. The targets move according to one of the following three possible mobility patterns: random waypoint, Manhattan grid, and reference point group mobility patterns. The feasibility of our algorithms and their performance are also tested on a real-world indoor testbed called drone-be-gone, using Parrot AR.Drone quadcopters. The deployment confirms the results obtained with simulations and highlights the suitability of the proposed solutions for real-time applications.
    DOI/handle
    http://dx.doi.org/10.1109/JSYST.2017.2777866
    http://hdl.handle.net/10576/12036
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video