• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Congestion-aware core mapping for Network-on-Chip based systems using betweenness centrality

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Maqsood T.
    Bilal K.
    Madani S.A.
    Metadata
    Show full item record
    Abstract
    Network congestion poses significant impact on application performance and network throughput in Network-on-Chip (NoC) based systems. Efficient core mapping can significantly reduce the network contention and end-to-end latency leading to improved application performance in NoC based multicore systems. In this work, we propose a Congestion-Aware (CA) core mapping heuristic based on betweenness centrality metric. The proposed CA algorithm optimizes core mapping using betweenness centrality of links to alleviate congestion from highly loaded NoC links. We use modified betweenness centrality metric to identify highly loaded NoC links that are more prone to congestion. In contrast to traditional betweenness centrality metric, which is generally used to measure the structural/static characteristics of the system, the adapted betweenness centrality metric utilizes the volume of communication traversing through the edges (NoC links) to capture the operational and dynamic characteristics of the system. The experimental results demonstrate that our proposed algorithm achieved significantly lower average channel load and end-to-end latency compared to the baseline First Fit (FF) and Nearest Neighbor (NN) core mapping algorithms. Particularly, CA algorithm achieved up to 46% and 12% lower channel load and end-to-end latency compared to FF algorithm, respectively. Moreover, proposed algorithm exhibits an average gain of 32% in terms of reduced network energy consumption compared to the baseline configuration. 2016 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2016.12.031
    http://hdl.handle.net/10576/12089
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video