• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrated assortment planning and store-wide shelf space allocation: An optimization-based approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Flamand T.
    Ghoniem A.
    Haouari M.
    Maddah B.
    Metadata
    Show full item record
    Abstract
    This paper investigates retail assortment planning along with store-wide shelf space allocation in a manner that maximizes the overall store profit. Each shelf comprises a set of contiguous segments whose attractiveness depends on the store layout. The expected profit accruing from allocating space to a product category depends not only on shelf segment attractiveness, but also on the profitability of product categories, their expected demand volumes, and their impulse purchase potential. Moreover, assortment affinities and allocation affinity/disaffinity considerations are enforced amongst certain pairs of interdependent product categories. A mixed-integer programming model is developed as a standalone approach to the problem and is also embedded in an optimization-based heuristic. The latter employs an initial feasible solution that is iteratively refined by re-optimizing subsets of shelves that are selected using a probabilistic scheme. A motivational case study in the context of grocery stores demonstrates the usefulness of the methodology and insights into the structure of optimal solutions are discussed. We show that the model selects a composite assortment of fast-movers and high-impulse product categories and constructs an effective retail shelf space allocation that promotes shopping convenience and unplanned purchases. Further, our computational study examines a testbed of 50 instances involving up to 800 product categories and 100 shelves for which our heuristic consistently yields solutions within 0.5% optimal in manageable times and drastically outperforms CPLEX with a time limit.
    DOI/handle
    http://dx.doi.org/10.1016/j.omega.2017.10.006
    http://hdl.handle.net/10576/12204
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video