• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Neuropathy Classification of Corneal Nerve Images Using Artificial Intelligence

    Thumbnail
    View/Open
    Tooba Salahuddin_OGS Approved Thesis.pdf (1.813Mb)
    Date
    2019-06
    Author
    Salahuddin, Tooba
    Metadata
    Show full item record
    Abstract
    Nerve variations in the human cornea have been associated with alterations in the neuropathy state of a patient suffering from chronic diseases. For some diseases, such as diabetes, detection of neuropathy prior to visible symptoms is important, whereas for others, such as multiple sclerosis, early prediction of disease worsening is crucial. As current methods fail to provide early diagnosis of neuropathy, in vivo corneal confocal microscopy enables very early insight into the nerve damage by illuminating and magnifying the human cornea. This non-invasive method captures a sequence of images from the corneal sub-basal nerve plexus. Current practices of manual nerve tracing and classification impede the advancement of medical research in this domain. Since corneal nerve analysis for neuropathy is in its initial stages, there is a dire need for process automation. To address this limitation, we seek to automate the two stages of this process: nerve segmentation and neuropathy classification of images. For nerve segmentation, we compare the performance of two existing solutions on multiple datasets to select the appropriate method and proceed to the classification stage. Consequently, we approach neuropathy classification of the images through artificial intelligence using Adaptive Neuro-Fuzzy Inference System, Support Vector Machines, Naïve Bayes and k-nearest neighbors. We further compare the performance of machine learning classifiers with deep learning. We ascertained that nerve segmentation using convolutional neural networks provided a significant improvement in sensitivity and false negative rate by at least 5% over the state-of-the-art software. For classification, ANFIS yielded the best classification accuracy of 93.7% compared to other classifiers. Furthermore, for this problem, machine learning approaches performed better in terms of classification accuracy than deep learning.
    DOI/handle
    http://hdl.handle.net/10576/12370
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video