• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Selecting the best meta-analytic estimator for evidence-based practice: a simulation study.

    Thumbnail
    Date
    2019-12-01
    Author
    Doi, Suhail A R
    Furuya-Kanamori, Luis
    Metadata
    Show full item record
    Abstract
    Studies included in meta-analysis can produce results that depart from the true population parameter of interest due to systematic and/or random errors. Synthesis of these results in meta-analysis aims to generate an estimate closer to the true population parameter by minimizing these errors across studies. The inverse variance heterogeneity (IVhet), quality effects and random effects models of meta-analysis all attempt to do this, but there remains controversy around the estimator that best achieves this goal of reducing error. In an attempt to answer this question, a simulation study was conducted to compare estimator performance. Five thousand iterations at 10 different levels of heterogeneity were run, with each iteration generating one meta-analysis. The results demonstrate that the IVhet and quality effects estimators, though biased, have the lowest mean squared error. These estimators also achieved a coverage probability at or above the nominal level (95%), whereas the coverage probability under the random effects estimator significantly declined (<80%) as heterogeneity increased despite a similar confidence interval width. Based on our findings, we would recommend the use of the IVhet and quality effects models and a discontinuation of traditional random effects models currently in use for meta-analysis.
    DOI/handle
    http://dx.doi.org/10.1097/XEB.0000000000000207
    http://hdl.handle.net/10576/12397
    Collections
    • Medicine Research [‎1739‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video