• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SparkIR: a Scalable Distributed Information Retrieval Engine over Spark

    Thumbnail
    View/Open
    Sara Al-Rasbi_OGS Approved Thesis.pdf (1.846Mb)
    Date
    2020-01
    Author
    Al-Rasbi, Sara Yaqoob
    Metadata
    Show full item record
    Abstract
    Search engines have to deal with a huge amount of data (e.g., billions of documents in the case of the Web) and find scalable and efficient ways to produce effective search results. In this thesis, we propose to use Spark framework, an in memory distributed big data processing framework, and leverage its powerful capabilities of handling large amount of data to build an efficient and scalable experimental search engine over textual documents. The proposed system, SparkIR, can serve as a research framework for conducting information retrieval (IR) experiments. SparkIR supports two indexing schemes, document-based partitioning and term-based partitioning, to adopt document-at-a-time (DAAT) and term-at-a-time (TAAT) query evaluation methods. Moreover, it offers static and dynamic pruning to improve the retrieval efficiency. For static pruning, it employs champion list and tiering, while for dynamic pruning, it uses MaxScore top k retrieval. We evaluated the performance of SparkIR using ClueWeb12-B13 collection that contains about 50M English Web pages. Experiments over different subsets of the collection and compared the Elasticsearch baseline show that SparkIR exhibits reasonable efficiency and scalability performance overall for both indexing and retrieval. Implemented as an open-source library over Spark, users of SparkIR can also benefit from other Spark libraries (e.g., MLlib and GraphX), which, therefore, eliminates the need of using
    DOI/handle
    http://hdl.handle.net/10576/12667
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video