• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IoT Based Compressive Sensing for ECG Monitoring

    Thumbnail
    Date
    2018
    Author
    Djelouat H.
    Baali H.
    Amira A.
    Bensaali F.
    Metadata
    Show full item record
    Abstract
    The Internet of Things (IoT) has empowered several sets of applications related to remote monitoring for patients with chronic cardiovascular diseases, where, electrocardiogram (ECG) monitoring has been widely studied and applied. Furthermore, in order to optimize the energy consumption in these monitoring systems, compression techniques have been widely deployed. Compressive sensing (CS) has gained a lot of attention in ECG monitoring as a result of its ability to leverage the ECG signal structure in order to achieve a high efficient acquisition scheme. The paper investigates the incorporation of CS in IoT-based ECG monitoring platforms. The platform consists of a CS-based compression and recovery, in addition, the platform provides an abnormality detection for each heart beat using different pattern recognition algorithms. The obtained results reveal that transmitting only 15 % of the samples is enough to recover the signal efficiently. Moreover, using up to 20% of the total sample can achieve a high classification accuracy as using the original data with a maximum drop down of 3.3 % in the worst case scenario. 2017 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.32
    http://hdl.handle.net/10576/12745
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video