Embedded system for motion control of an omnidirectional mobile robot
Date
2018Metadata
Show full item recordAbstract
In this paper, an embedded system for motion control of omnidirectional mobile robots is presented. An omnidirectional mobile robot is a type of holonomic robots. It can move simultaneously and independently in translation and rotation. The RoboCup small-size league, a robotic soccer competition, is chosen as the research platform in this paper. The first part of this research is to design and implement an embedded system that can communicate with a remote server using a wireless link, and execute received commands. Second, a fuzzy-Tuned proportional-integral (PI) path planner and a related low-level controller are proposed to attain optimal input for driving a linear discrete dynamic model of the omnidirectional mobile robot. To fit the planning requirements and avoid slippage, velocity, and acceleration filters are also employed. In particular, low-level optimal controllers, such as a linear quadratic regulator (LQR) for multiple-input-multiple-output acceleration and deceleration of velocity are investigated, where an LQR controller is running on the robot with feedback from motor encoders or sensors. Simultaneously, a fuzzy adaptive PI is used as a high-level controller for position monitoring, where an appropriate vision system is used as a source of position feedback. A key contribution presented in this research is an improvement in the combined fuzzy-PI LQR controller over a traditional PI controller. Moreover, the efficiency of the proposed approach and PI controller are also discussed. Simulation and experimental evaluations are conducted with and without external disturbance. An optimal result to decrease the variances between the target trajectory and the actual output is delivered by the onboard regulator controller in this paper. The modeling and experimental results confirm the claim that utilizing the new approach in trajectory-planning controllers results in more precise motion of four-wheeled omnidirectional mobile robots. 2018 IEEE.
Collections
- Computer Science & Engineering [2402 items ]