• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Suppressor capacity of iron nanoparticles biosynthesized using Salvia chloroleuca leaf aqueous extract on methadone-induced cell death in PC12: Formulation a new drug from relationship between the nanobiotechnology and neurology sciences

    Thumbnail
    Date
    2020-01-01
    Author
    Ahmeda, A.
    Ahmeda, Ahmad
    Zangeneh, Mohammad Mahdi
    Mansooridara, Shirin
    Malek, Zahra
    Zangeneh, Akram
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    © 2020 John Wiley & Sons, Ltd. Metallic nanoparticles have gained significant attention in the area of biomedical technology. Because of its high surface area, metallic nanoparticles are being widely used in various fields including the medical and engineering sciences. One of the valuable applications of metallic nanoparticles especially copper, zinc, and iron nanoparticles is increasing the physiological function of central nervous system. Besides, Iranian people are using the Salvia chloroleuca for neuroprotective properties. In the present research, iron nanoparticles were biosynthesized by S. chloroleuca leaf aqueous extract as reducing and stabilizing agents. Also, we revealed the protective effect of FeNPs in methadone-treated PC12 cells. FeNPs were characterized and analyzed using common nanotechnology techniques including FT-IR, UV–Vis. spectroscopy; EDS, TEM, and FE-SEM. TEM and FE-SEM images revealed a uniform spherical morphology for FeNPs. In the biological part of the current study, the both treatments of FeNPs significantly (p ≤ 0.01) reduced the cell cytotoxicity and cell death index as well as increased the cell viability and cell proliferation in methadone-treated PC12 cells. In these treatments, mitochondrial membrane potential significantly (p ≤ 0.01) increased compared to methadone-induced PC12 cells. DPPH free radical scavenging test was did to evaluate the antioxidant potentials of FeCl3, S. chloroleuca, and FeNPs. DPPH test indicated similar antioxidant activities for S. chloroleuca, FeNPs, and butylated hydroxytoluene. In current experiment, we concluded that iron nanoparticles biosynthesized by S. chloroleuca leaf aqueous extract suppressed methadone-induced cell death in a dose-dependent manner in PC12 cells.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078025140&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/aoc.5355
    http://hdl.handle.net/10576/12914
    Collections
    • Medicine Research [‎1913‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video