• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157:H7 and Listeria monocytogenes in minced camel's meat: The role of nanotechnology in the food industry

    Thumbnail
    Date
    2020-01-01
    Author
    Gharehyakheh, S.
    Gharehyakheh, Sepideh
    Ahmeda, Ahmad
    Haddadi, Amir
    Jamshidi, Morteza
    Nowrozi, Masoumeh
    Zangeneh, Mohammad Mahdi
    Zangeneh, Akram
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    © 2020 John Wiley & Sons, Ltd. Because herbal nanoparticles have antimicrobial properties, researchers have tried to synthesize them to aid in increasing the shelf time of food and food products. In this regard, gold nanoparticles (AuNPs) synthesized by plants are particularly important. In this study, fresh and clean leaves of Satureja hortensis were selected for the synthesis of AuNPs. We also evaluated the efficacy of these nanoparticles to increase the shelf life of and remove Escherichia coli O157:H7 and Listeria monocytogenes from minced camel's meat. The nanoparticles were analyzed by UV–visible spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction tests. The FT-IR spectroscopy results demonstrated that the antioxidant compounds in the plant were the sources of reducing power, reducing gold ions to AuNPs. FE-SEM and TEM images revealed the size of the nanoparticles to be 22.26 nm. The 2,2-diphenyl-1-picrylhydrazyl test revealed similar antioxidant potentials for S. hortensis, AuNPs, and butylated hydroxytoluene. S. hortensis and AuNPs had high cell viability dose-dependently against the human umbilical vein endothelial cell line. At the beginning of the food industry part of this experiment, all samples of control, S. hortensis, and AuNPs were preserved at 4°C for 20 days. During these 20 days, the sensory, chemical, and microbiological parameters were assessed for all samples. AuNPs significantly inhibited the growth of E. coli and L. monocytogenes. In addition, AuNPs significantly increased the protein carbonyl content, thiobarbituric acid reactive substances, pH, peroxide value, total volatile base nitrogen, and sensory attributes (color, odor, and overall acceptability). The best results were seen in AuNPs (1%). These findings reveal that the inclusion of S. hortensis extract improves the solubility of AuNPs, which led to a notable enhancement in their preservative and antibacterial effects.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078733770&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/aoc.5492
    http://hdl.handle.net/10576/12924
    Collections
    • Medicine Research [‎1759‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video