• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EEG-Based Transceiver Design with Data Decomposition for Healthcare IoT Applications

    Thumbnail
    Date
    2018
    Author
    Abdellatif A.A.
    Khafagy M.G.
    Mohamed A.
    Chiasserini C.-F.
    Metadata
    Show full item record
    Abstract
    The emergence of Internet of Things (IoT) applications and rapid advances in wireless communication technologies have motivated a paradigm shift in the development of viable applications such as mobile-health (m-health). These applications boost the opportunity for ubiquitous real-Time monitoring using different data types such as electroencephalography (EEG), electrocardiography (ECG), etc. However, many remote monitoring applications require continuous sensing for different signals and vital signs, which result in generating large volumes of real time data that requires to be processed, recorded, and transmitted. Thus, designing efficient transceivers is crucial to reduce transmission delay and energy through leveraging data reduction techniques. In this context, we propose an efficient data-specific transceiver design that leverages the inherent characteristics of the generated data at the physical layer to reduce transmitted data size without significant overheads. The goal is to adaptively reduce the amount of data that needs to be transmitted in order to efficiently communicate and possibly store information, while maintaining the required application quality-of-service (QoS) requirements. Our results show the excellent performance of the proposed design in terms of data reduction gain, signal distortion, low complexity, and the advantages that it exhibits with respect to state-of-The-Art techniques since we could obtain about 50% compression ratio at 0% distortion and sample error rate.
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2018.2832463
    http://hdl.handle.net/10576/13085
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video