• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Doped conductive polymers and single-walled carbon nanotubes as charge storage devices

    Thumbnail
    Date
    2018
    Author
    Al-Haik M.Y.
    Kabir M.M.
    Ayesh A.I.
    Haik Y.
    Aldajah S.H.
    Metadata
    Show full item record
    Abstract
    Single-walled carbon nanotubes (SWCNTs), introduced as nano-fillers, were used as charge storage elements. Organic semiconducting polymers were produced by doping organic plasticizers with nonconductive polymers. The nano-fillers were embedded along with organic semiconducting and insulating polymers in constructing metal-insulator-semiconductor (MIS) capacitors classified as organic capacitors. The capacitors were constructed by conventional spin-coating method with metallic electrodes fabricated by means of thermal evaporation. A comparative study was investigated on two device configurations that were built. One with the use of the organic semiconducting polymers and the other with commercially available doped silicon wafer as the semiconductor. Capacitance versus voltage measurements were analyzed on the two configurations to evaluate the storage performance of the devices. The results showed that the device that contained the organic polymeric charge transport layer stored more charge in the SWCNT nano-fillers when compared with the device that contained the silicon wafer. The results also depicted that the embedded SWCNTs were responsible for storing the charge when compared with reference devices that did not contain these nano-fillers.
    DOI/handle
    http://dx.doi.org/10.1088/2053-1591/aad7a9
    http://hdl.handle.net/10576/13206
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video