• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-enzymatic biosensing of glucose based on silver nanoparticles synthesized from Ocimum tenuiflorum leaf extract and silver nitrate

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Dayakar, T.
    Venkateswara,Rao K.
    Park, J.
    Sadasivuni, K.K.
    Ramachandra, Rao K.
    Jaya rambabu, N.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    An enzyme-free glucose sensor developed based on silver nanoparticles (Ag NPs) via bio-mediated route using Ocimum tenuiflorum leaves extract. The Ag NPs were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Particle size analyzer (PSA), Scanning electron microscopy (SEM), Energy-dispersive X-ray (EDAX) spectroscopy, and Transmission electron microscopy (TEM), to study structural, optical and morphological properties. The electrocatalytic activity of Ag NPs towards the oxidation of glucose in the 0.1 M NaOH electrolyte solution was analyzed. The Ag NPs was coated on Glassy carbon electrode (GCE) and reports indicating the outstanding capability such as high sensitivity (895.8 μAmM−1cm−2), linear range (1–8.9 mM), response time (<4s), low detection limit (0.0048 μM, S/N = 3), long-term stability, reproducibility, repeatability, and selectivity of the sensor. Therefore, the bio-synthesized Ag NPs can markedly helpful to fabricate non-enzymatic, sustainable, simple, low cost, and eco-friendly glucose monitoring devices.
    DOI/handle
    http://dx.doi.org/10.1016/j.matchemphys.2018.05.046
    http://hdl.handle.net/10576/13209
    Collections
    • Center for Advanced Materials Research [‎1633‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video