• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis, characterization and performance of Pd-based core-shell methane oxidation nano-catalysts

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Ali S.
    Al-Marri M.J.
    Al-Jaber A.S.
    Abdelmoneim A.G.
    Khader M.M.
    Metadata
    Show full item record
    Abstract
    In this paper, a comparative investigation of the catalytic performances of Pd@TiO2 and Pd@CeO2, core-shells nanocatalysts supported over functionalized alumina, for application to methane oxidation is presented. The results indicated that the Pd@CeO2/SiO2.Al2O3 core-shell nanocatalyst exhibited higher activity and stability than the Pd@TiO2/SiO2.Al2O3 nanocatalyst. Complete combustion of methane over the Pd@CeO2/SiO2.Al2O3 nanocatalyst was achieved at about 400 °C. By contrast, the maximum combustion of methane over the Pd@TiO2/SiO2.Al2O3 nanocatalyst was only attained at ∼550 °C. The Pd@TiO2/SiO2.Al2O3 nanocatalyst experienced deactivation, and a transient dip in methane conversion in the temperature region between 580 °C and 750 °C was also observed. The exceptional activity of the Pd@CeO2/SiO2.Al2O3 nanocatalyst was attributed to the intimate interaction between palladium (Pd) and ceria (CeO2) and efficient oxygen back-spillover at Pd and CeO2 interface resulting from the core-shell structure.
    DOI/handle
    http://dx.doi.org/10.1016/j.jngse.2018.01.023
    http://hdl.handle.net/10576/13386
    Collections
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video