• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of CO2 adsorption on enhanced natural gas recovery and sequestration in carbonate reservoirs

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Eliebid M.
    Mahmoud M.
    Shawabkeh R.
    Elkatatny S.
    Hussein I.A.
    Metadata
    Show full item record
    Abstract
    In this study, CO2 injection for the purpose of Enhanced Gas Recovery (EGR) and sequestration after primary recovery is investigated on Pink Desert limestone from Edwards Plateau formation in central-west Texas. In this paper, competitive adsorption of CH4 and CO2 is studied in the temperature range 50 ?C?150 ?C using a mixture of CO2 and CH4. Methane adsorption on the surface of the carbonate rock reduced from 50 mg/g at 50 ?C to 12.4 mg/g at 150 ?C due to exothermic nature of physical adsorption of methane on calcite. Addition of 10% CO2 to methane has enhanced the adsorption from 12.4 mg/g for pure methane to 18.3 mg/g for the 10% CO2 gas mixture at 150 ?C. Adding CO2 to methane will compete with CH4 on the adsorption sites and due to CO2 high adsorption affinity the total uptake of the system is increased depending on CO2 partial pressure. The adsorption experiments have shown that the adsorption of CO2 on Pink Desert limestone is four times higher than that of CH4 at the same pressure and temperature due to the high affinity of CO2 to the calcite rocks derived from strong electrostatic attraction between CO2 molecules and calcite. The thermodynamic analysis confirmed the high natural selectivity of carbonate toward CO2 with lower heat of adsorption for CO2 and the adsorption is spontaneous at low temperatures. The adsorption-desorption experiments showed that CO2 content of injected gas has a strong influence on natural gas desorption from the rocks. The CO2 content and rock mineralogy influence the desorption isotherm model. The potential of using CO2 in EGR and sequestration applications especially in low temperature reservoirs is discussed. A model that explains the contribution of the desorption of natural gas to the total gas production is proposed. ? 2017 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.jngse.2017.04.019
    http://hdl.handle.net/10576/13397
    Collections
    • GPC Research [‎507‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video