• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications

    Thumbnail
    Date
    2019
    Author
    Joseph B.
    Augustine R.
    Kalarikkal N.
    Thomas S.
    Seantier B.
    Grohens Y.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Electrospun poly(-caprolactone) (PCL) scaffolds incorporated with bioactive materials play a key role in tissue engineering applications due to their extra cellular matrix (ECM) mimicking property, biocompatibility and biodegradability. Electrospinning is one of the most successful techniques for the fabrication of nonwoven, three-dimensional, porous, and nano or submicron scale fiber-based matrices with tunable morphology. Investigations on the use of electrospun PCL and its blends/composites for skin reconstruction has gained much momentum recently. Feasibility of improving the cell attachment and antimicrobial properties of scaffolds by incorporating active agents such as growth factors, medications and nanomaterials have been frequently investigated. For rapid wound healing, electrospun wound dressings/skin substitutes should be able to accelerate wound healing and enhance cell proliferation. Gradual degradation of the scaffold along with tissue regeneration is also very important. Thus, carefully designed scaffolds that can improve the skin regeneration along with the potential to promote rapid wound healing has become a promising strategy in tissue regeneration therapies. This review outlines, a comprehensive overview of electrospun PCL based scaffolds in the context of skin bioengineering and wound healing. It sought to give an understanding about the advances in electrospun PCL scaffolds after the incorporation of active agents and the need to take these advances from bench side to clinical practice.
    DOI/handle
    http://dx.doi.org/10.1016/j.mtcomm.2019.02.009
    http://hdl.handle.net/10576/13400
    Collections
    • Mechanical & Industrial Engineering [‎1506‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video