• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep neural network-aided Gaussian message passing detection for ultra-reliable low-latency communications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Guo J.
    Song B.
    Chi Y.
    Jayasinghe L.
    Yuen C.
    Guan Y.L.
    Du X.
    Guizani M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Ultra-reliable low-latency communications (URLLC) is a key technology in 5G supporting real-time multimedia services, which requires a low-cost signal recovery technology in the physical layer. A kind of well-known low-complexity signal detection is message passing algorithm (MPA) based on factor graph. However, reliability and robustness of MPA are deteriorated when there are cycles in factor graph. To address this issue, we propose two novel Gaussian message passing (GMP) algorithms with the aid of deep neural network (DNN), in which the network architectures consist of two DNNs associated with detections for mean and variance of the signal. Particularly, the network architecture is constructed by transforming the factor graph and message update functions of the original GMP algorithm from node-type into edge-type. Then, weights and bias parameters are assigned in the network architecture. With the aid of deep learning methods, the optimal weights and bias parameters are obtained. Numerical results demonstrate that two proposed DNN-aided GMP algorithms can significantly improve the convergence of original GMP algorithm and also achieve robust performances in the cases without prior information.
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2019.01.041
    http://hdl.handle.net/10576/13425
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video