• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments

    Thumbnail
    View/Open
    Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments.pdf (1.771Mb)
    Date
    2019
    Author
    Kunhoth J.
    Karkar A.
    Al-Maadeed S.
    Al-Attiyah A.
    Metadata
    Show full item record
    Abstract
    Background: Considerable number of indoor navigation systems has been proposed to augment people with visual impairments (VI) about their surroundings. These systems leverage several technologies, such as computer-vision, Bluetooth low energy (BLE), and other techniques to estimate the position of a user in indoor areas. Computer-vision based systems use several techniques including matching pictures, classifying captured images, recognizing visual objects or visual markers. BLE based system utilizes BLE beacons attached in the indoor areas as the source of the radio frequency signal to localize the position of the user. Methods: In this paper, we examine the performance and usability of two computer-vision based systems and BLE-based system. The first system is computer-vision based system, called CamNav that uses a trained deep learning model to recognize locations, and the second system, called QRNav, that utilizes visual markers (QR codes) to determine locations. A field test with 10 blindfolded users has been conducted while using the three navigation systems. Results: The obtained results from navigation experiment and feedback from blindfolded users show that QRNav and CamNav system is more efficient than BLE based system in terms of accuracy and usability. The error occurred in BLE based application is more than 30% compared to computer vision based systems including CamNav and QRNav. Conclusions: The developed navigation systems are able to provide reliable assistance for the participants during real time experiments. Some of the participants took minimal external assistance while moving through the junctions in the corridor areas. Computer vision technology demonstrated its superiority over BLE technology in assistive systems for people with visual impairments. - 2019 The Author(s).
    DOI/handle
    http://dx.doi.org/10.1186/s12942-019-0193-9
    http://hdl.handle.net/10576/13572
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Psychological Sciences [‎124‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video