• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learning predictive autoscaling policies for cloud-hosted microservices using trace-driven modeling

    Thumbnail
    Date
    2019
    Author
    Abdullah M.
    Iqbal W.
    Erradi A.
    Bukhari F.
    Metadata
    Show full item record
    Abstract
    Autoscaling methods are important to ensure response time guarantees for cloud-hosted microservices. Most of the existing state-of-the-art autoscaling methods use rule-based reactive policies with static thresholds defined either on monitored resource consumption metrics such as CPU and memory utilization or application-level metrics such as the response time. However, it is challenging to determine the most appropriate threshold values to minimize resource consumption and performance violations. Whereas, predictive autoscaling methods can help to address these challenges. These methods require considerable time to collect sufficient performance traces representing different resource provisioning possibilities for a target infrastructure to train a useful predictive autoscaling model. In this paper, we tackle this problem by proposing a system that models the response time of microservices through stress testing and then uses a trace-driven simulation to learn a predictive autoscaling model for satisfying response time requirements automatically. The proposed solution reduces the need for collecting performance traces to learn a predictive autoscaling model. Our experimental evaluation on AWS cloud using a microservice under realistic dynamic workloads validates the proposed solution. The validation results show excellent performance to satisfy the response time requirement with only 4.5% extra cost for using the proposed autoscaling method compared to the reactive autoscaling method. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/CloudCom.2019.00028
    http://hdl.handle.net/10576/13598
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video