• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time data center's telemetry reduction and reconstruction using markov chain models

    Thumbnail
    Date
    2019
    Author
    Baig S.-U.-R.
    Iqbal W.
    Berral J.L.
    Erradi A.
    Carrera D.
    Metadata
    Show full item record
    Abstract
    Large-scale data centers are composed of thousands of servers organized in interconnected racks to offer services to users. These data centers continuously generate large amounts of telemetry data streams (e.g., hardware utilization metrics) used for multiple purposes, including resource management, workload characterization, resource utilization prediction, capacity planning, and real-time analytics. These telemetry streams require costly bandwidth utilization and storage space, particularly at medium-long term for large data centers. This paper addresses this problem by proposing and evaluating a system to efficiently reduce bandwidth and storage for telemetry data through real-time modeling using Markov chain based methods. Our proposed solution was evaluated using real telemetry datasets and compared with polynomial regression methods for reducing and reconstructing data. Experimental results show that data can be lossy compressed up to 75% for bandwidth utilization and 95.33% for storage space, with reconstruction accuracy close to 92%. - 2007-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/JSYST.2019.2918430
    http://hdl.handle.net/10576/13645
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video