• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improvement of hydrogen production under solar light using cobalt (II) phosphide hydroxide co-doped g-C3N4 photocatalyst

    Thumbnail
    Date
    2019
    Author
    Thang P.Q.
    Jitae K.
    Nguyen T.D.
    Huong P.T.
    Viet N.M.
    Al Tahtamouni T.M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Graphitic carbon nitride (g-C3N4) has been extensively studied as a model of photocatalyst material for water splitting. This study investigates potential of cobalt (II) phosphide hydroxide co-doped g-C3N4 (Co-P/C3N4) for solar water splitting to produce hydrogen gas as a clean energy source. Characterizations of the materials were done using X-ray diffraction, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and UV–visible spectroscopy (UV–Vis). Under solar light, the hydrogen production rates per hour using Co-P/C3N4 were 386.8 µmol/g which is 14-fold higher than that of g-C3N4 (28.1 µmol/g). The co-doping of cobalt (II) phosphide hydroxide onto g-C3N4 rapidly improved light harvesting capacity and photo-generated charge carrier separation, leading to increase photocatalytic H2 production. In addition, the reusability of Co-P/C3N4 was confirmed by performing the photocatalytic hydrogen production for five cycles. The material consistently produced H2 without any significant loss in hydrogen productivity. Based on these results, Co-P/C3N4 could be utilized as promising photocatalyst material for production of clean energy.
    DOI/handle
    http://dx.doi.org/10.1007/s12210-019-00844-2
    http://hdl.handle.net/10576/13668
    Collections
    • Materials Science & Technology [‎341‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video