• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bio-carrier and operating temperature effect on ammonia removal from secondary wastewater effluents using moving bed biofilm reactor (MBBR)

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Ashkanani A.
    Almomani F.
    Khraisheh M.
    Bhosale R.
    Tawalbeh M.
    AlJaml K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study investigates the impact of bio-carriers' surface area and shape, wastewater chemistry and operating temperature on ammonia removal from real wastewater effluents using Moving bed biofilm reactors (MBBRs) operated with three different AnoxKaldness bio-carriers (K3, K5, and M). The study concludes the surface area loading rate, specific surface area, and shape of bio-carrier affect ammonia removal under real conditions. MBBR kinetics and sensitivity for temperature changes were affected by bio-carrier type. High surface area bio-carriers resulted in low ammonia removal and bio-carrier clogging. Significant ammonia removals of 1.420 ± 0.06 and 1.103 ± 0.06 g − N/m2. d were achieved by K3(As = 500 m2/m3) at 35 and 20 °C, respectively. Lower removals were obtained by high surface area bio-carrier K5 (1.123 ± 0.06 and 0.920 ± 0.06 g − N/m2. d) and M (0.456 ± 0.05 and 0.295 ± 0.05 g − N/m2. d) at 35 and 20 °C, respectively. Theta model successfully represents ammonia removal kinetics with θ values of 1.12, 1.06 and 1.13 for bio-carrier K3, K5 and M respectively. MBBR technology is a feasible choice for treatment of real wastewater effluents containing high ammonia concentrations.
    DOI/handle
    http://dx.doi.org/10.1016/j.scitotenv.2019.07.231
    http://hdl.handle.net/10576/13688
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video