• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crushing analysis and multi-objective optimization of different length bi-thin walled cylindrical structures under axial impact loading

    Thumbnail
    Date
    2019
    Author
    Dastjerdi A.A.
    Shahsavari H.
    Eyvazian A.
    Tarlochan F.
    Metadata
    Show full item record
    Abstract
    This article attempts to increase the crashworthiness characteristics of energy absorbers. It is found that the effect of the bi-tubular arrangement on the energy absorption and peak force is nonlinear. This nonlinearity is somewhat related to friction but is mostly related to the changing of buckling modes. Therefore, it is possible to reach higher Specific Absorbed Energy (SAE) in the bi-tubular case than with two tubes since the weight is the same in both arrangements while the energy absorption is higher in the bi-tubular case. To exploit this, multi-objective optimization of bi-thin walled cylindrical aluminium tubes under axial impact loading is performed. The absorbed energy and the SAE are considered as the objective functions while the maximum crush load is regarded as a constraint. Finally, the optimal dimensions of tubes are found in order to maximize the SAE and energy absorption for a specified maximum crushing force. - 2019, - 2019 Informa UK Limited, trading as Taylor & Francis Group.
    DOI/handle
    http://dx.doi.org/10.1080/0305215X.2018.1562551
    http://hdl.handle.net/10576/13708
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video