• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Novel DCT-Based Compression Scheme for 5G Vehicular Networks

    Thumbnail
    Date
    2019
    Author
    Su Y.
    Lu X.
    Huang L.
    Du X.
    Guizani M.
    Metadata
    Show full item record
    Abstract
    Next-generation (5G) vehicular networks will support various network applications, leading to specific requirements and challenges for wireless access technologies. This trend has motivated the development of the long-term evolution-vehicle (LTE-V) network, a 5G cellular-based vehicular technology. Due to the limited bandwidth for vehicular communications, it is important to efficiently utilize slim spectrum resources in vehicular networks. In this paper, we introduce a cloud radio access network (C-RAN)-based vehicular network architecture, named C-VRAN, which facilitates efficient management and centralized processing of vehicular networks. Furthermore, we propose a discrete cosine transform (DCT)-based data compression scheme for C-VRAN to enhance the effective data rate of the fronthaul network. This scheme first uses DCT to perform time-frequency conversion of LTE-V I/Q data and then utilizes the Lloyd-Max algorithm to quantify data in the frequency domain before finally selecting an appropriate coding scheme to achieve better performance. Simulation results show that the proposed scheme can achieve 3 times compression ratio within 1% error vector amplitude distortion, and it also has strong independence and versatility, allowing it to be used as a standalone module for the current LTE-V system. - 1967-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2019.2939619
    http://hdl.handle.net/10576/13740
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video