• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Corrosion evaluation of 316L stainless steel in CNT-water nanofluid: Effect of CNTs loading

    Thumbnail
    View/Open
    materials-12-01634.pdf (18.85Mb)
    Date
    2019
    Author
    Abdeen D.H.
    Atieh M.A.
    Merzougui B.
    Khalfaoui W.
    Metadata
    Show full item record
    Abstract
    Polarization resistance and potentiodynamic scan testing were performed on 316L stainless steel (SS) at room temperature in carbon nanotube (CNT)-water nanofluid. Different CNT loadings of 0.05, 0.1, 0.3 and 0.5 wt% were suspended in deionized water using gum arabic (GA) surfactant. Corrosion potential, Tafel constants, corrosion rates and pitting potential values indicated better corrosion performance in the presence of CNTs with respect to samples tested in GA-water solutions. According to Gibbs free energy of adsorption, CNTs were physically adsorbed into the surface of the metal, and this adsorption followed Langmuir adsorption isotherm type II. Samples tested in CNT nanofluid revealed a corrosion performance comparable to that of tap water and better than that for GA-water solutions. Among all samples tested in CNT nanofluids, the lowest corrosion rate was attained with 0.1 wt% CNT nanofluid, while the highest value was obtained with 0.5 wt% CNT nanofluid. At higher CNT concentrations, accumulated CNTs might form active anodic sites and increase the corrosion rate. SEM images for samples of higher CNT loadings were observed to have higher pit densities and diameters.
    DOI/handle
    http://dx.doi.org/10.3390/ma12101634
    http://hdl.handle.net/10576/13782
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video